Memory of jamming – multiscale models for soft and granular matter
نویسنده
چکیده
Soft, disordered, micro-structured materials are ubiquitous in nature and industry, and are different from ordinary fluids or solids, with unusual, interesting static and flow properties. The transition from fluid to solid – at the so-called jamming density – features a multitude of complex mechanisms, but there is no unified theoretical framework that explains them all. In this study, a simple yet quantitative and predictive model is presented, which allows for a variable, changing jamming density, encompassing the memory of the deformation history and explaining a multitude of phenomena at and around jamming. The jamming density, now introduced as a new state-variable, changes due to the deformation history and relates the system’s macroscopic response to its micro-structure. The packing efficiency can increase logarithmically slow under gentle repeated (isotropic) compression, leading to an increase of the jamming density. In contrast, shear deformations cause anisotropy, changing the packing efficiency exponentially fast with either dilatancy or compactancy. The memory of the system near jamming can be explained by a micro-statistical model that involves a multiscale, fractal energy landscape and links the microscopic particle picture to the macroscopic continuum description, providing a unified explanation for the qualitatively different flow-behavior for different deformation modes. To complement our work, a recipe to extract the historydependent jamming density from experimentally accessible data is proposed, and alternative state-variables are compared. The proposed simple macroscopic constitutive model is calibrated with the memory of microstructure. Such approach can help understanding predicting and mitigating failure of structures or geophysical hazards, and will bring forward industrial proMulti Scale Mechanics (MSM), Faculty of Engineering Technology, MESA+, P.O.Box 217, 7500 AE Enschede, The Netherlands E-mail: [email protected] · E-mail: [email protected] The authors declare no conflict of interest. cess design and optimization, and help solving scientific challenges in fundamental research.
منابع مشابه
Stress-dependent normal-mode frequencies from the effective mass of granular matter.
A zero-temperature critical point has been invoked to control the anomalous behavior of granular matter as it approaches jamming or mechanical arrest. Criticality manifests itself in an anomalous spectrum of low-frequency normal modes and scaling behavior near the jamming transition. The critical point may explain the peculiar mechanical properties of dissimilar systems such as glasses and gran...
متن کاملCritical scaling near jamming transition for frictional granular particles.
The critical rheology of sheared frictional granular materials near jamming transition is numerically investigated. It is confirmed that there exists a true critical density which characterizes the onset of the yield stress and two fictitious critical densities which characterize the scaling laws of rheological properties. We find the existence of a hysteresis loop between two of the critical d...
متن کاملTopological boundary modes in jammed matter.
Granular matter at the jamming transition is poised on the brink of mechanical stability, and hence it is possible that these random systems have topologically protected surface phonons. Studying two model systems for jammed matter, we find states that exhibit distinct mechanical topological classes, protected surface modes, and ubiquitous Weyl points. The detailed statistics of the boundary mo...
متن کاملDiverging viscosity and soft granular rheology in non-Brownian suspensions.
We use large scale computer simulations and finite-size scaling analysis to study the shear rheology of dense three-dimensional suspensions of frictionless non-Brownian particles in the vicinity of the jamming transition. We perform simulations of soft repulsive particles at constant shear rate, constant pressure, and finite system size and carefully study the asymptotic limits of large system ...
متن کاملJamming transition in emulsions and granular materials.
We investigate the jamming transition in packings of emulsions and granular materials via molecular dynamics simulations. The emulsion model is composed of frictionless droplets interacting via nonlinear normal forces obtained using experimental data acquired by confocal microscopy of compressed emulsions systems. Granular materials are modeled by Hertz-Mindlin deformable spherical grains with ...
متن کامل